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Abstract. The Ising model with both random longitudinal and transverse fields is studied by 
combining the pair approximation with the discretized path integral representation. The phase 
diagrams of the spin S = system are obtained; the relations between the critical tempenture 
and the local structure as well as the tricritical and re-entnnt phenomena are discussed. 

1. Introduction 

Since de Gennes introduced the transverse king model to explain the phase transition of 
hydrogen-bonded ferroelectrics such as KHlPO4 in the order-disorder phenomenon with 
tunnelling effects [l], it has been successfully used to study a number of problems of phase 
transitions associated with order-disorder phenomena in other systems (a more detailed 
application has been reviewed in [Z]). The model is described by the king Hamiltonian to 
which is added a term which represents the effects of the transverse field part. Owing to 
the requisite non-commutativity of operators in the Hamiltonian, deriving the eigenvalues 
of the Hamiltonian is very difficult. Therefore, many theorists have used various methods 
to investigate this problem [3-71, such as the mean-field approximation, the effective-field 
theory, the renormalization group method, Monte Carlo simulation, and the method of 
combining the pair approximation with the discretized path integral representation (DPIR). 
Many interesting phenomena have been investigated. 

Recently, the transverse random-field Ising model (TRFIM) has received much attention. 
Cassol eta1 [SI have studied the phase diagram and found a finite discontinuity in the phase 
diagram at T = 0, between the trimodal and bimodal random distributions of the transverse 
field. Subsequently, Yokota [9] pointed out that the directional randomness of the transverse 
field does not change the critical behaviour. 

A large number of papers have focused on the transverse king model with a random 
longitudinal field in the presence of a fixed transverse field, and its properties have 
been investigated in detail [6,7]. However, the properties of the king model with both 
longitudinal and transverse random fields have not been reported. We know that the form 
of the random-longitudinal-field distribution plays an important role in the determination of 
the order of phase transition; on the other hand, the transverse field gives rise to a possible 
spin-flip transition and hence works against the ordering. What will happen when both the 
transverse and the longitudinal fields are randomly distributed? How does this change the 
phase diagram? This is our goal in the present work. For the case when the spin S = i, we 
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use a method which combines the pair approximation with DPIR [10-12] to investigate the 
critical behaviour of the king model with longitudinal and transverse random fields which 
are bimodally and trimodally distributed, respectively. 
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2. Theory 

For an king model with both longitudinal and transverse random fields, the total Hamiltonian 
of the system is given by 

where Sf and S: are the quantum spin (S) operators at site i, the summation in the first 
term is taken over every nearest-neighbour pair of spins only once, hi is the longitudinal 
random field at site i with the symmetric bimodal distribution of the probability given by 

P(h; )=  ~ [ S ( h ; - h ) + 6 ( h ; + h ) ]  (24 

and Pi in equation (1) represents the transverse random field at site i with the trimodal 
distribution of the probability given by 

(2b) 1-P mi) = p m i )  + -mri - r) +wi + r)i 2 

where the parameter p measures the fraction of spins in the system not exposed to the 
transverse field. r represents a uniform transverse magnetic field. 

The effective Hamiltonian for a pair of nearest-neighbour spins i and j in the pair 
approximation can be written in the form [ 131 

He) = -JS:Sj' - riS: - (hi + h:')S: - rjS? - (hj + hj')SJ (3) 

where heif is the local molecular field on site i coming from spins at all other sites except 
from site j .  For simplicity, we suppose that he' is independent of the sites. 

In order to obtain the pair partition function, we shall reformulate the Hamiltonian in the 
DPIR. The idea in the DPlR is to convert the quantized two-state spin on each lattice site into 
a P-component vector 0 (U('), U('), . . . ,U('')) and eventually to let P go to infinity. Each 
component UJ(')(t = 1, 2, . . . , P) is taken to be a classical two-state variable U(') = fl, and 
the net effect is to represent the quantum uncertainty by creating many copies, or replicas, 
of the original variable [10-12]. By means of the DPIR, the pair Hamiltonian can be split 
into a reference part Hr' of a one-body Hamiltonian plus a two-body interaction part V .  

The corresponding free energy E n  be expressed in terms of the free energy of the 
reference part and the cumulant expansion in the reference part: 

m 
- PF = In{Tr[exp(-flH(*))I) = -BFo + c ( - f l ) " C , ( V )  (4) 

with -6Fo = ln(Tr[exp(-,!3H~))]] and the cumulants are given by C l ( V )  = {V}O, 
Cz(V)  = (V2)0  - (V):, . . ., where {. . .}o indicates an average over the reference part. 

n= I 
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The pair partition function may be evaluated from 

In Q”) = ln(Tr[e~p(-pH(~))]} 

= lnUZcosh{p[(hi +he”)’ + ~ ~ I 1 ” l l I  + ln[[ZcoshM(hj + heffj2 + rjll”)I! 

tanh{p[(hj + heff)* + rj21l/~) 
X (hj + heff) 

[(hj + he92 + r;]’/2 

The effective Hamiltonian for the ith spin is of the form [13] 

H ( ’ )  = -riSf - (hi + Heff)$ (6) 

where He is the one-body effective field at site i, and He“ i s  related to he‘ as follows: 
He‘ = [ Z / ( Z  - lj]heff (Z is the coordination number). 

The corresponding single-spin partition function is 

Q‘” = Zcosh@[(hi + Heff)’ + r~11’2). (7) 

The free energy of the full system is given by the expression [141 

where (. . .)tc.r is the average over distributions of longitudinal and transverse random fields. 
According to the Landau second-order phase transition theory, when the average free energy 
is expanded in terms of he‘‘ (as an order parameter), the second-order phase transition 
equation can be determined from when the expanding coefficient of the second-order term 
(hfl)2 vanishes in equation (8). 

By introducing q fie dimensionless parameters 

1 TE- 
W J  

h H s -  
ZJ Z J  
r G=- 

the equation determining the second-order phase transition can be written as [lo] 

+ L s e c h 2 ( G ) = -  Z 
T 2-1 
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3. Results and discussion 

The conditions for the existence of tricritical points can be obtained in the limit case of 
T --t 0 115, 161. We expand the free energy (equation (8)) up to the fourth-order term of 
he' and then set the coefficient of the second- and fourth-order terms in the expansion to 
zero separately. The existence of a tricritical point will be determined unambiguously from 
the two coupled equations 

Yong-qiang Wang and Zhen-ya Li 

and 

From these equations, the critical values of Go and HO of the transverse and longitudinal 
fields may be determined. We find that a critical point may exist only when 0 < p < 0.2 
and G c Go with H > Ho. The change in the critical values of Go and HO with p is shown 
in figure 1. 

l.orl Zz e 

,,, , ,  
z=12 

Z=6 
GO 

0.5 0.5 

2 4 2  

z=- 
7=6 

0 0.1 0.2 0 0.1 0.2 
P P 

Figure 1. The changes in the critical values Go and HI, with p for 2 = 6,  12 and m. 

The phase diagrams of the change in phase transition temperature with the transverse 
field for the case with the longitudinal field me shown in figures 2 and 3. 

First, we consider the case H = 0 which is similar to that in [SI. For the case Z = 6, 
the phase diagram is shown in figure 2, which is in agreement with that in [8]. For p = 0 
i.e. the transverse random field is a bimodal distribution, the critical transverse field rc for 
which T' = 0 does exist. We obtain that the values of the critical transverse field rC and 
critical transition temperature T, (when r = 0) are rc = 5.045 and Tc = 4.925. The results 
are comparable with series expansion results [15]: rc = 5.165 and Tc = 4.545. It can be 
seen that our results are better than the results obtained in [8]: rc = 5.335; Tc = 4.935. 
The reason is that the lattice-spin interaction has been taken into account in our method of 
calculation. 
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Figure 2. Phase diagnm in the (T, G) plane for Z = 6 ,  N = 0 and p = 0, 0.01, 0.1, 0.2, b.6 
and 0.99. 

When the transverse random field is taken as a trimodal distribution (i.e. p # 0), 
there is no critical transverse field. This indicates that the thermodynamic properties of the 
system are discontinuous between the two aifferent cases, p =' 0 and p # 0. The pair 
approximation takes into account the local structure of the interaction on the pattern of the 
underlying system, which results in coordination-dependent phase diagrams. We believe 
that a discontinuity between the bimodal and trimodal distributions of the transverse field 
at T = 0 exists in the TRFIM. 

Secondly, when the form of the random longitudinal field is taken to be a bimodal 
distribution, the discontinuity mentioned above will disappear. The phase diagram shown 
in figure 3 is different from that in the absence of the longitudinal field H. When H is very 
small (e.g. H -= 0.05), the result obtained is similar to the case H = 0. If the longitudinal 
field increases to a large value (such as H = 0.2), the phase diagrams in figure 3 show 
that, for the case p = 0, the critical transverse field exists; however, there is no re-entrant 
phenomenon and no tricritical point. For 0 e p << 1, the re-entrant phenomenon and 
re-entrant tricritical point may occur and become more spectacular when p increases to a 
certain value. For larger p .  there is no critical transverse field. On the other hand, the value 
of the critical transverse field increases as the coordination number Z increases. The phase 
diagrams in figure 3 display the relation between the transition temperature and the local 
structure. If the longitudinal field is sufficiently large, we shall find that, even when p = 0, 
the re-entrant phenomenon and re-entrant hicritical point may also occur. 

Furthermore, the phase diagrams for Z =-6, 12 and cc in the (T, H) plane are shown 
in figures 4(a), 4(b) and 4(c), corresponding to G = 0.6, 0.678 and 0.72, respectively, 
where the influence of the random distributed transverse field on the critical behaviour of 
the system is investigated. Our model may also be seen as a random-longitudinal-field 
Ising model (RLFIM) with a trimodal random distribution of the transverse field, which is 
different from the RLRM model with a fixed transverse field. We shall now compare the 
results with those in [IO], where a bimodal random-longitudinal-field king model with a 
fixed transverse field is studied. For trimodally distributed transverse fields in which the 
value of the reduced uniform transverse field is taken to be the same as the value of the 
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Figure 3. Phase diagram in the (T. G) plane far U = 0.2, p = 0, 0.01, 0.1. 0.15, 0.6 and 0.99 
(U) 2 = 6; ( b )  Z = 12. 

fixed reduced transverse field in [IO], we find that the critical values of random transverse 
fields at which hicritical points may exist are larger than those of the RLRM in the presence 
of a fixed transverse field. Relatively speaking, the tricritical points are easy to observe. 
On the other hand, critical values of the random transverse field where the phase transition 
temperature T, = 0 is lower, e.g. in figure 4(b), for Z = 6, G, = 0.222 is less than 
G, = 0.26 for a fixed bansverse field, and the re-entrant phenomenon is more spectacular. 

As we know, the reentrant transition may be attributed to competition between the 
quantum fluctuation and randomness; the quantum fluctuation is induced by the transverse 
field and the randomness is caused by the random distributions of transverse and longitudinal 
fields. However, the two effects do not operate in the same manner when the temperature 
decreases. When the temperature is reduced, quantum fluctuations dominate and the 
transition from the disordered phase to the ordered phase is more characteristic of a quantum 
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Figure 4. Phase diagnm in the (T. H) plane for p = 0.05 and Z = 6, 12 and M: (a) G = 0.6 
(b) G = 0.678; (c )  G = 0.72. 

spin transition. If the temperature is decreased  further,^ the random fields dominate and a 
re-entrant transition to the disordered phase may take place. As p increases, the probability 
of disappearance of the transverse field at some sites is increased and the quantum effect is 
relatively weaker, but the randomness of the transverse random field distribution increases 
(to a certain extent); therefore, the re-entrant phenomenon may take place even when the 
transverse field is large, i.e. the re-entrant phenomennon is more spectacular. If p increases 
further, the quantum effects will be very weak, and at the same time the randomness is 
reduced; therefore, if the transverse field magnitude increases, the re-entrant phenomenon 
will disappear. 
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For the RLFIM with a random transverse field, the tricritical and re-entrant phenomena 
may occur. However, there are some differences in the phase diagram between the RLRM 
with a random transveme field and with a fixed transverse field. 

So far, we have calculated the phase diagrams for the king model with both longitudinal 
and transverse random fields. We have selected the bimodal distribution of probability for 
the random longitudinal field. The form of the random-field distribution has an important 
effect on the phase diagrams of the system. 
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